The Risks of Empowering “Citizen Data Scientists”

Until recently, the prevailing understanding of artificial intelligence (AI) and its subset machine learning (ML) was that expert data scientists and AI engineers were the only people that could push AI strategy and implementation forward. That was a reasonable view. After all, data science generally, and AI in particular, is a technical field requiring, among other things, expertise that requires many years of education and training to obtain.

Fast forward to today, however, and the conventional wisdom is rapidly changing. The advent of “auto-ML” — software that provides methods and processes for creating machine learning code — has led to calls to “democratize” data science and AI. The idea is that these tools enable organizations to invite and leverage non-data scientists — say, domain data experts, team members very familiar with the business processes, or heads of various business units — to propel their AI efforts.

In theory, making data…

Continue Reading →

This article was written by Reid Blackman and originally published on hbr.org